6 research outputs found

    Heat shock protein 20 promotes sirtuin 1-dependent cell proliferation in induced pluripotent stem cells

    Get PDF
    Background: Heat shock proteins (HSPs) are molecular chaperones that protect cells against cellular stresses or injury. However, it has been increasingly recognized that they also play crucial roles in regulating fundamental cellular processes. HSP20 has been implicated in cell proliferation, but conflicting studies have shown that it can either promote or suppress proliferation. The underlying mechanisms by which HSP20 regulates cell proliferation and pluripotency remain unexplored. While the effect of HSP20 on cell proliferation has been recognized, its role in inducing pluripotency in human-induced pluripotent stem cells (iPSCs) has not been addressed. AIM To evaluate the efficacy of HSP20 overexpression in human iPSCs and evaluate the ability to promote cell proliferation. The purpose of this study was to investigate whether overexpression of HSP20 in iPSCs can increase pluripotency and regeneration. Methods: We used iPSCs, which retain their potential for cell proliferation. HSP20 overexpression effectively enhanced cell proliferation and pluripotency. Overexpression of HSP20 in iPSCs was characterized by immunocytochemistry staining and realtime polymerase chain reaction. We also used cell culture, cell counting, western blotting, and flow cytometry analyses to validate HSP20 overexpression and its mechanism. Results: This study demonstrated that overexpression of HSP20 can increase the pluripotency in iPSCs. Furthermore, by overexpressing HSP20 in iPSCs, we showed that HSP20 upregulated proliferation markers, induced pluripotent genes, and drove cell proliferation in a sirtuin 1 (SIRT1)-dependent manner. These data have practical applications in the field of stem cell-based therapies where the mass expansion of cells is needed to generate large quantities of stem cell-derived cells for transplantation purposes. Conclusion: We found that the overexpression of HSP20 enhanced the proliferation of iPSCs in a SIRT1-dependent manner. Herein, we established the distinct crosstalk between HSP20 and SIRT1 in regulating cell proliferation and pluripotency. Our study provides novel insights into the mechanisms controlling cell proliferation that can potentially be exploited to improve the expansion and pluripotency of human iPSCs for cell transplantation therapies. These results suggest that iPSCs overexpressing HSP20 exert regenerative and proliferative effects and may have the potential to improve clinical outcomes.Fil: Ullah, Mujib. University of Stanford; Estados UnidosFil: Qian, Nicole Pek Min. University of Stanford; Estados UnidosFil: Yannarelli, Gustavo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaFil: Akbar, Asma. University of Stanford; Estados Unido

    Disease Modeling Using 3D Organoids Derived from Human Induced Pluripotent Stem Cells

    No full text
    The rising interest in human induced pluripotent stem cell (hiPSC)-derived organoid culture has stemmed from the manipulation of various combinations of directed multi-lineage differentiation and morphogenetic processes that mimic organogenesis. Organoids are three-dimensional (3D) structures that are comprised of multiple cell types, self-organized to recapitulate embryonic and tissue development in vitro. This model has been shown to be superior to conventional two-dimensional (2D) cell culture methods in mirroring functionality, architecture, and geometric features of tissues seen in vivo. This review serves to highlight recent advances in the 3D organoid technology for use in modeling complex hereditary diseases, cancer, host–microbe interactions, and possible use in translational and personalized medicine where organoid cultures were used to uncover diagnostic biomarkers for early disease detection via high throughput pharmaceutical screening. In addition, this review also aims to discuss the advantages and shortcomings of utilizing organoids in disease modeling. In summary, studying human diseases using hiPSC-derived organoids may better illustrate the processes involved due to similarities in the architecture and microenvironment present in an organoid, which also allows drug responses to be properly recapitulated in vitro

    Knowledge Gaps in Rodent Pancreas Biology: Taking Human Pluripotent Stem Cell-Derived Pancreatic Beta Cells into Our Own Hands

    Get PDF
    In the field of stem cell biology and diabetes, we and others seek to derive mature and functional human pancreatic β cells for disease modeling and cell replacement therapy. Traditionally, knowledge gathered from rodents is extended to human pancreas developmental biology research involving human pluripotent stem cells (hPSCs). Whilst much has been learnt from rodent pancreas biology in the early steps towards Pdx1+ pancreatic progenitors, much less is known about the transition towards Ngn3+ pancreatic endocrine progenitors. Essentially, the later steps of pancreatic β cell development and maturation remain elusive to date. As a result, the most recent advances in the stem cell and diabetes field have relied upon combinatorial testing of numerous growth factors and chemical compounds in an arbitrary trial-and-error fashion to derive mature and functional human pancreatic β cells from hPSCs. Although this hit-or-miss approach appears to have made some headway in maturing human pancreatic β cells in vitro, its underlying biology is vaguely understood. Therefore, in this mini-review, we discuss some of these late-stage signaling pathways that are involved in human pancreatic β cell differentiation and highlight our current understanding of their relevance in rodent pancreas biology. Our efforts here unravel several novel signaling pathways that can be further studied to shed light on unexplored aspects of rodent pancreas biology. New investigations into these signaling pathways are expected to advance our knowledge in human pancreas developmental biology and to aid in the translation of stem cell biology in the context of diabetes treatments

    Wnt/β-catenin-mediated signaling re-activates proliferation of matured cardiomyocytes

    No full text
    Abstract Background The Wnt/β-catenin signaling pathway plays an important role in the development of second heart field (SHF Isl1+) that gives rise to the anterior heart field (AHF) cardiac progenitor cells (CPCs) for the formation of the right ventricle, outflow tract (OFT), and a portion of the inflow tract (IFT). During early cardiogenesis, these AHF CPCs reside within the pharyngeal mesoderm (PM) that provides a microenvironment for them to receive signals that direct their cell fates. Here, N-cadherin, which is weakly expressed by CPCs, plays a significant role by promoting the adhesion of CPCs within the AHF, regulating β-catenin levels in the cytoplasm to maintain high Wnt signaling and cardioproliferation while also preventing the premature differentiation of CPCs. On the contrary, strong expression of N-cadherin observed throughout matured myocardium is associated with downregulation of Wnt signaling due to β-catenin sequestration at the cell membrane, inhibiting cardioproliferation. As such, upregulation of Wnt signaling pathway to enhance cardiac tissue proliferation in mature cardiomyocytes can be explored as an interesting avenue for regenerative treatment to patients who have suffered from myocardial infarction. Methods To investigate if Wnt signaling is able to enhance cellular proliferation of matured cardiomyocytes, we treated cardiomyocytes isolated from adult mouse heart and both murine and human ES cell-derived matured cardiomyocytes with N-cadherin antibody or CHIR99021 GSK inhibitor in an attempt to increase levels of cytoplasmic β-catenin. Immunostaining, western blot, and quantitative PCR for cell proliferation markers, cell cycling markers, and Wnt signaling pathway markers were used to quantitate re-activation of cardioproliferation and Wnt signaling. Results N-cadherin antibody treatment releases sequestered β-catenin at N-cadherin-based adherens junction, resulting in an increased pool of cytoplasmic β-catenin, similar in effect to CHIR99021 GSK inhibitor treatment. Both treatments therefore upregulate Wnt signaling successfully and result in significant increases in matured cardiomyocyte proliferation. Conclusion Although both N-cadherin antibody and CHIR99021 treatment resulted in increased Wnt signaling and cardioproliferation, CHIR99021 was found to be the more effective treatment method for human ES cell-derived cardiomyocytes. Therefore, we propose that CHIR99021 could be a potential therapeutic option for myocardial infarction patients in need of regeneration of cardiac tissue

    Organoids as tools for fundamental discovery and translation-A Keystone Symposia report

    No full text
    Complex three-dimensional in vitro organ-like models, or organoids, offer a unique biological tool with distinct advantages over two-dimensional cell culture systems, which can be too simplistic, and animal models, which can be too complex and may fail to recapitulate human physiology and pathology. Significant progress has been made in driving stem cells to differentiate into different organoid types, though several challenges remain. For example, many organoid models suffer from high heterogeneity, and it can be difficult to fully incorporate the complexity of in vivo tissue and organ development to faithfully reproduce human biology. Successfully addressing such limitations would increase the viability of organoids as models for drug development and preclinical testing. On April 3-6, 2022, experts in organoid development and biology convened at the Keystone Symposium "Organoids as Tools for Fundamental Discovery and Translation" to discuss recent advances and insights from this relatively new model system into human development and disease

    Trans-interaction of risk loci 6p24.1 and 10q11.21 is associated with endothelial damage in coronary artery disease

    No full text
    Background and aims: Single nucleotide polymorphism rs6903956 has been identified as one of the genetic risk factors for coronary artery disease (CAD). However, rs6903956 lies in a non-coding locus on chromosome 6p24.1. We aim to interrogate the molecular basis of 6p24.1 containing rs6903956 risk alleles in endothelial disease biology. Methods and Results: We generated induced pluripotent stem cells (iPSCs) from CAD patients (AA risk genotype at rs6903956) and non-CAD subjects (GG non-risk genotype at rs6903956). CRISPR-Cas9-based deletions (Δ63- 89bp) on 6p24.1, including both rs6903956 and a short tandem repeat variant rs140361069 in linkage disequilibrium, were performed to generate isogenic iPSC-derived endothelial cells. Edited CAD endothelial cells, with removal of ‘A’ risk alleles, exhibited a global transcriptional downregulation of pathways relating to abnormal vascular physiology and activated endothelial processes. A CXC chemokine ligand on chromosome 10q11.21, CXCL12, was uncovered as a potential effector gene in CAD endothelial cells. Underlying this effect was the preferential inter-chromosomal interaction of 6p24.1 risk locus to a weak promoter of CXCL12, confirmed by chromatin conformation capture assays on our iPSC-derived endothelial cells. Functionally, risk genotypes AA/AG at rs6903956 were associated significantly with elevated levels of circulating damaged endothelial cells in CAD patients. Circulating endothelial cells isolated from patients with risk genotypes AA/AG were also found to have 10 folds higher CXCL12 transcript copies/cell than those with non-risk genotype GG. Conclusions: Our study reveals the trans-acting impact of 6p24.1 with another CAD locus on 10q11.21 and is associated with intensified endothelial injury.Ministry of Education (MOE)Nanyang Technological UniversityNational Research Foundation (NRF)Published versionThe National Research Foundation, Singapore (Project Number 370062002) funded the Singapore Coronary Artery Disease Genetics Study (SCADGENS) and genotyping of the participants. The team from Nanyang Technological University Singapore was funded by an Academic Research Fund Tier 1 grant (2018-T1-001-030) from the Ministry of Education, Singapore, Human Frontier Science Program Research Grant (RGY0069/2019), and the Nanyang Assistant Professorship. K.Y. T. is supported by NTU Research Scholarship. H.H.L. is supported by the Institute of Molecular and Cell Biology (IMCB) Scientific Staff Development Award (SSDA) for her part-time Ph.D. A.K.K.T. is supported by IMCB, A*STAR, Precision Medicine and Personalised Therapeutics Joint Research Grant 2019, the 2nd A*STAR-AMED Joint Grant Call 192B9002 and NUHSRO/2021/035/NUSMed/04/NUS-IMCB Joint Lab/LOA
    corecore